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The identi"cation of parameters in an experimental two-well chaotic system is presented.
The method involves the extraction of periodic orbits from a chaotic set. The form of the
di!erential-equation model is assumed, with unknown coe$cients appearing linearly on the
terms in the model. The harmonic-balance method is applied to these periodic orbits,
resulting in a linear set of equations in the unknown parameters, which can then be solved in
the least-squares sense. The identi"cation process reveals the non-linear force}displacement
characteristic of the oscillator. The results are cross-checked with various sets of extracted
periodic orbits. The model is validated by comparing the linearized characteristics,
examining simulated responses, and evaluating the vector "eld.

( 2001 Academic Press
1. INTRODUCTION

System identi"cation can be broadly divided into non-parametric identi"cation and
parametric identi"cation. In parametric system identi"cation, enough is known a priori to
write the form of the di!erential equations of motion, although with unknown coe$cients
multiplying linear and/or non-linear functions in these equations. Among the many
methods for non-linear parametric identi"cation are those of Nayfeh [1], in which
resonances are exploited, Stry and Mook [2], which is applied to the time series, Gottlieb
et al. [3] and Feldman [4], which employ the Hilbert transform, and Yasuda et al. [5, 6], in
which the harmonic-balance method is used in an inverse way to estimate parameters.

One of the applications of chaos is in system modelling. To this end, much of the activity
is geared towards dimensionality studies, in which bounds on the number of active-state
variables are established. The determination of the size of a system might be a "rst step in
developing a priori knowledge that may later be used in parametric system identi"cation. In
addition, non-linear prediction can be performed using modern methods of analyzing
chaotic data [7].
0022-460X/01/450785#22 $35.00/0 ( 2001 Academic Press
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The fundamental property of deterministic chaos that we exploit is that a chaotic set is
the closure of in"nitely many unstable periodic orbits. PoincareH (1854}1912) realized the
existence of periodic orbits within the complex tangles of the three-body problem, and their
potential usefulness: &&These periodic solutions are so valuable for us because they are, so to
say, the only breach by which we may attempt to enter an area heretofore deemed
inaccessible.'' (The quote is obtained through Tu"llaro et al. [8].)

Indeed, the unstable periodic orbits can be approximately extracted from chaotic data
from either discrete or continuous-time systems [8}10]. They have been used in system
identi"cation, usually in the PoincareH section [11}13]. The harmonic-balance method has
been used with the unstable periodic orbits in a variety of numerical test cases,
including autonomous and non-autonomous oscillators [14]. An error analysis showed
that the usage of many periodic orbits gives a more reliable "t of the parameters than
a single periodic orbit. The drawback is that the extracted unstable periodic orbits are
approximations, not only due to the usual errors of experimental observation, but also since
the recursive orbit represents a trajectory in the neighborhood of a saddle-type periodic
orbit.

In this paper, we investigate a chaotic data set taken from a periodically driven
magneto-mechanical oscillator with a two-well potential. The harmonic-balance
parametric-identi"cation scheme is applied to chaotic data of this experimental system. The
chaotic attractor is reconstructed using the method of delays [15, 16], from which the
unstable periodic orbits are extracted for use in the identi"cation algorithm.
A mathematical model is chosen "rst in polynomial form by knowing that the experimental
system has a smooth two-well sti!ness potential, and then in the form of interpolation
functions. The method of harmonic balance is used to form a set of algebraic equations in
system parameters, which are estimated by a least-squares "t.

The next section includes a description of the experiment, and the process of obtaining
experimental periodic orbits. Section 3 focuses on the identi"cation of parameters in models
of the system. Section 4 addresses the veri"cation of the identi"ed models, and also damping
issues. Conclusions are drawn in section 5.

2. EXPERIMENTS

Here, we describe the experimental system and the process of obtaining periodic data
needed for the identi"cation scheme.

2.1. EXPERIMENTAL SET-UP

The experiment consisted of a sti!ened beam buckled by two magnets (Figure 1). Two
rare-earth permanent magnets were placed on the base of the frame holding the beam to
create the two-well potential. The beam had extra rigidity in the form of steel bars epoxied
and bolted along the length away from the clamped end. This additional rigidity was
included to make the system behave as a single-degree-of-freedom. The fruit of this e!ort
includes the recovery of the stable and unstable manifolds by means of stochastic
interrogation [17]. The uncovered portion of the beam near the clamped end acted as an
elastic hinge from which the position of the beam was measured by strain gauges. The frame
was then "xed through a rigid mount to an electromagnetic shaker. A periodic driving
signal was fed through a power ampli"er to the shaker to provide the external forcing
function.



Figure 1. Experimental set-up. Lengths are in centimeters.
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Data from the strain gauges were acquired using a 12-bit, $5 V data-acquisition (A/D)
board, with the digital values from !2048 to 2047 corresponding to !5 to 5 V. With no
forcing, three equilibria exist: two are stable at digital values of !495 and 315 (!1)21 and
0)77 V), and one is unstable (saddle) at approximately zero. The driving frequency was set at
7)5 Hz with 1)5 V of the function generator output, by which the chaotic data were
generated, passed through a 50 Hz low-pass "lter, and collected at the sampling frequency
of 187)5 Hz for a total of 57344 data. At this sampling frequency and driving frequency,
there are 25 samples per driving period.

2.2. PHASE-SPACE RECONSTRUCTION

Since there is only one observable in the data set, denoted by Mx
j
N, j"1,2,N, with

x
j
"x ( jDt), where x is the displacement of the beam tip and Dt is the sampling time interval,

the phase space of the experimental system is to be reconstructed using the method of delays
[15, 16] to build d-dimensional pseudo-vectors with elements being the single observable
separated by a constant delay time, such that y

j
"(x

j
,x

j`q ,2, x
j`q(d~1)

), where q is the
delay index and d is embedding dimension, both of which are to be determined.
The pseudo-vector represents a data point in the pseudo-phase space. We chose q"7
samples based on the "rst minimum in the average mutual information [18] between x

n
and

x
n`q as q increases. The average mutual information was computed on a grid generated
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from 40 equally sized bins in each axis. The data were then reconstructed in
a four-dimensional delay space. The four dimensions were determined by singular systems
analysis [19] with q"2 and by the method of false nearest neighbors [20] with q"7.

2.3. PERIODIC-ORBIT EXTRACTION

From the reconstructed chaotic attractor, the unstable periodic orbits can be extracted as
follows [8, 10]. In the pseudo-phase space, we seek recurrent points such that

Dy
i`K

!y
i
D)e, (1)

where K is an integer and e is the set as 1)75% of the maximum extent of the chaotic set. The
actual recurrence errors on the extracted orbits ranged from 0)51 to 1)73%.

There is some art in choosing the parameter e. If e is too small, then insu$cient
recurrences will be detected. If e is too large, then the recurrent orbits may not faithfully
represent the unstable periodic orbits. A value of e"0)5% of the span of the data was used
in references [8, 10]. A bound on the error at the recurrence is proportional to e, with the
proportionality dependent on the local linear dynamics about the unstable periodic orbit
[14]. Examples of the e!ects of e on recurrence errors, and full-orbit errors, were examined
by Al-Zamel [21]. E!ects of e on errors in Fourier coe$cients have not been examined in
detail.

Researchers often collect several extractions of an unstable periodic orbit and use the
average as its representation. With our data set, and our choice of e, we "nd few repetitions
of periodic orbits. Also, it has been observed that orbits with the minimum recurrence tend
to be the most accurate [21]. Therefore, we do not take averages to represent periodic
orbits.

3. PARAMETER IDENTIFICATION

The identi"cation process involves the choice of a mathematical model with parameters
in the form of unknown coe$cients. Once periodic orbits are available, the harmonic-
balance method is then performed on function evaluations of the periodic displacements.
Parameters are determined in the least-squares sense.

3.1. CHOOSING A MATHEMATICAL MODEL

Knowing that the experimental system is an externally excited non-linear system with
a two-well potential, we "rst choose a mathematical model in a polynomial form to "t the
characteristics of the non-linear function. We choose a polynomial because we know that
the magnetic and elastic forces are smooth. We do not know, however, whether a power
series converges to the actual sti!ness characteristic in the domain of the displacement.
Furthermore, in the case of divergence, we do not know the optimal truncation of the series
representation. Our best hope is to obtain a model which qualitatively "ts the characteristic
of the experimental system. Later, we implement an interpolation model [22].

The general model with viscous damping is written as

mxK#axR #
p
+
i/0

b
i
f
i
(x, xR )"a cos ut#b sinut, (2)
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where p is the number of terms in the power series. For illustration, suppose m"1 and a, b
i
,

a and b are the parameters to be determined. In the case of a polynomial sti!ness model, we
have f

i
(x, xR )"xi.

3.2. HARMONIC BALANCE

We follow the identi"cation scheme introduced by Yasuda et al. [5]. Given a measured
periodic response in x (t), which may be either stable or extracted from the chaotic attractor,
the non-linear functions, when evaluated with x (t), are periodic and can be approximated in
a truncated Fourier series, such as

x
k
+

a
0
2
#

n
+
j/1
Aaj cos

jut

k
#b

j
sin

jut

k B , x5
k
+

n
+
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j
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k B ,
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jut
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jut

k B
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f
i
(x
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, x5

k
)"xi

k
+

c
i0
2
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n
+
j/1
Acij cos

jut

k
#d

ij
sin

jut

k B .

The subscript k indicates that the data are period-k. The Fourier coe$cients are calculated
from the data, which have a period ¹"ku. For the case of polynomial non-linear
functions, c

1j
"a

j
and d

1j
"b

j
.

Substituting these Fourier series into model equation (2), and balancing the Fourier
coe$cients of any set of harmonics, a set of linear algebraic equations in system parameters
can be constructed. This usage of the harmonic-balance method contrasts its usual usage for
response analysis, where the ordinary di!erential equation is known, and the e!ort is to
solve a set of non-linear equations in Fourier coe$cients. For systems forced with a single
harmonic, and for autonomous systems, the method of harmonic balance requires
non-linearity so that several harmonics can be balanced.

In this paper, we typically use multiples of the primary harmonic. Although
subharmonics are also available, we have not implemented them. Thus, for the example of
m"1 and k"1, the balance equations, in matrix form, are
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where a9 is the parameter vector of the system model, A is a (2n#1)](p#4) matrix, q is
a (2n#1) vector containing the Fourier coe$cients of the external forcing function, and n is
the number of harmonics retained in the Fourier series representation. Each column of
A contains the Fourier coe$cients of the corresponding term in the system model. For
general values of k, the indices and frequencies in the elements of matrix A are scaled by k.
The vector q contains a non-zero element due to known quantities in the di!erential
equations.

If any parameters are known, they can be incorporated into the known quantities in q. By
dividing throughout by m, we eliminate one parameter, and end up with a coe$cient of &&1''
in front of the xK term. In such a case, the (nu)2 terms are incorporated into q.

If 2n"p#3 and the matrix A is non-singular, the parameter vector a can be determined
uniquely. In practice, it is statistically better if algebraic equation (3) is overdetermined, so
that 2n'p#3. Consequently, the exact solution will not generally exist, but a best
solution can be obtained by a method such as a least-squares "t. This can be done by
performing a pseudo-inverse which involves singular decomposition. (See references
[23, 24] for a geometric discussion, and reference [14] for a previous application to this
problem.)

Theoretically, the number of terms in the Fourier series should be in"nite, but Mickens
[25] has shown that the upper bounds of the absolute magnitudes of the harmonic
coe$cients decrease exponentially, such that they become ine!ective in the least-squares
estimation procedures. Another consideration is that our extracted orbits are
approximately periodic, and the deviation from periodicity tends to show up as a small kink
which registers in the higher harmonics. In our experience, the best results are obtained if
n is from two to four, where n is the number of harmonics of the primary (driving) frequency.
This limits the number of unknown parameters in the model that can be estimated using
a single periodic orbit. (It might be worthwhile to investigate the use of subharmonics.)
However, we can use several periodic orbits to form several sets of algebraic equations,
thereby augmenting the matrix A to increase the redundancy of algebraic equations for the
least-squares estimation. This treatment can improve estimation results even if the number
of unknown parameters is not excessively large. This availability of several extracted
periodic orbits from a chaotic set increases the applicability beyond that of a simple
periodic response.

3.3. DATA PROCESSING ISSUES

The experimental data are in a digital format, ranging from !5 to 5 V of the voltage
output from the A/D converter. There is a scaling factor between the voltages and the
displacement units. The parameters in equation (2) are scaled by this factor in a non-linear
fashion. We assume that the factor between the digital data z and the variable x in equation
(2) is a constant c in units of m/V, such that x"cz. Substituting this into equation (2), the
model equation can be rewritten as

(mc) zK#(ac) z5 #
p
+
i/0

(b
i
ci) zi"a cos ut#b sin ut. (4)

If the data are large in amplitude, the high order non-linear terms will be even larger in
amplitude, causing an ill-conditioning of the matrix A used in the least-squares "t. To
prevent this, we can choose c in such a way as to normalize the data to the unit interval. We
have, in fact, not normalized the data, since its absolute value is con"ned to a few volts, and
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the condition numbers for our matrix A are reasonable. The time variable, however, is
non-dimensionalized to a new variable, tJ"ut. This normalization of time is manifested in
the velocity and acceleration terms, and improves the conditioning of the least-squares
problem.

Meanwhile, we know that the external forcing is periodic, although the forcing amplitude
is unknown. This implies that equation (4) is actually indeterminate. To handle this, we
divide throughout equation (4), written in terms of tJ , by the quantity mcu2, and recast it in
the form

aJ z@#
p
+
i/0

b3
i
zi!aJ cos tJ!bI sin tJ"!zJ A, (5)

where the prime represents d/dtJ , and a8 "a/mu, b3
i
"b

i
ci~1/mu2, aJ "a/mcu2, and

bI "b/mcu2 are the parameters to be determined.
Using the extracted periodic orbits, each term in model equation (5) is nearly periodic and

approximately expressed in a truncated Fourier series. The Fourier coe$cients of the
multiples of primary harmonics are balanced to form a set of algebraic equations in system
parameters for least-squares estimations as previously described.

3.4. ERRORS IN EXTRACTED PERIODIC ORBITS

Since we are balancing harmonics of the periodic orbits to identify parameters, it is of
interest to investigate the errors that the extracted unstable periodic orbits have in their
Fourier coe$cients. To this end, we compare Fourier coe$cients of extracted unstable
periodic orbits with those of stable periodic responses. Table 1 contains the Fourier
coe$cients of three extractions of the same period-1 response from the chaotic data. This set
is compared with three arbitrarily chosen periods of a di!erent, stable period-1 response. In
this case, the extracted period-1 orbits are all part of the same visit to the unstable period-1
orbit, and there is no time between the extracted orbits listed. On the other hand, the listed
stable periodic orbits are not directly in sequence, rather there is some time between them.
The comparison gives some sense of the variation inherited by the orbits as they are
extracted from the chaotic set. This variation will be enhanced for velocity and acceleration
signals, and will also be distorted in function evaluations of the signals.
TABLE 1

Fourier coe.cients of three sets of unstable period-1 orbits (;POs) extracted from chaotic
data, and three periods of a stable period-1 response (SPOs). ¹he periodic orbits are

distinguished by their associated indices

Harmonic UPOs SPOs

n"51 384 n"51 410 n"51 436 n"100 n"500 n"1000

DC term 0)7408 0)7355 0)7386 0)8067 0)8077 0)8079
cos t 0)5072 0)4836 0)4598 !0)5724 !0)5725 !0)5725
sin t !0)6167 !0)6378 !0)6251 !0)1069 !0)1097 !0)1131
cos 2t !0)0146 !0)0048 !0)0076 !0)0079 !0)0080 !0)0087
sin 2t !0)0135 !0)0224 !0)0226 !0)0025 !0)0028 !0)0032
cos 3t 0)0127 0)0133 0)0157 0)0063 0)0071 0)0069
sin 3t !0)0003 0)0061 0)0063 0)0049 0)0052 0)0055
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Considerable variation is also observed in the primary Fourier coe$cients of extracted
periodic orbits of other periods. Some e!ort has been made to analytically estimate bounds
on the errors in the Fourier coe$cients due to errors in the periodic orbits [14, 21], and also
to improve the extracted UPOs based on local dynamics [13, 21].

3.5. RESULTS FOR POLYNOMIAL MODELS

Using various sets of extracted periodic orbits together in the identi"cation algorithm,
with the data being processed as discussed above, and using model equation (5),
identi"cation results are shown in Tables 2}4. Table 2 shows results for a cubic sti!ness
model, identi"ed from the balance of three primary harmonics. The third harmonic of the
primary frequency represents a frequency of 22)5 Hz, which is below the nominal "lter
frequency of 50 Hz. Table 3 lists the identi"ed parameters when two primary harmonics are
used. The variation seen in the parameters between two and three balanced harmonics is on
par with the variation within the di!erent sets of periodic orbits. Table 4 shows the
parameters identi"ed for a fourth-degree sti!ness model with three primary harmonics
balanced. In most cases, the fourth-degree coe$cient is quite small. The coe$cients of the
other terms indicate an agreement between the identi"ed fourth-degree sti!ness and the
identi"ed cubic sti!ness.

In each case, there is some consistency in the damping coe$cients, the forcing terms, and
the qualitative nature of the identi"ed sti!ness. Somewhat disturbing are the incidences of
negative damping. We will revisit this damping issue later. The three sti!ness functions, each
identi"ed from 30 periodic orbits, are plotted in Figure 2. We will use the cubic model based
TABLE 3

Identi,cation results for a cubic model with two primary harmonics balanced. Groups of 10
unstable periodic orbits (;POs) are displayed, and an estimation based on all 30;POs is also

listed

UPOs aJ bI
0

bI
1

bI
2

bI
3

a8 bI

1}10 0)0034 0)0329 !0)2560 0)0709 0)1837 !0)1425 0)2425
1}10 !0)0359 !0)0477 !0)2894 0)1189 0)2062 !0)1683 0)2793
2, 4, 4, 5, 6, 6}10 0)0041 !0)0621 !0)3005 0)1338 0)2045 !0)1903 0)2613

All UPOs !0)0032 !0)0331 !0)2759 0)1125 0)1970 !0)1718 0)2619

TABLE 2

Identi,cation results for a cubic model with three primary harmonics balanced. Groups of 10
unstable periodic orbits (;POs) are displayed against the periodicities of the orbits used, and

an estimation based on all 30 ;POs is also listed

UPOs aJ bI
0

bI
1

bI
2

bI
3

a8 bI

1}10 0)0068 0)0413 !0)2247 0)0621 0)1705 !0)1433 0)2481
1}10 !0)0197 !0)0377 !0)2421 0)1037 0)1840 !0)1750 0)2861
2, 4, 4, 5, 6, 6}10 0)0153 !0)0565 !0)2719 0)1271 0)1935 !0)1945 0)2636

All UPOs 0)0057 !0)0251 !0)2424 0)1026 0)1825 !0)1750 0)2669



TABLE 4

Identi,cation results for a fourth-degree model with three primary harmonics balanced. Groups
of 10 unstable periodic orbits (;POs) are displayed, and an estimation based on all 30;POs is

also listed

UPOs aJ bI
0

bI
1

bI
2

bI
3

bI
4

a8 bI

1}10 0)0070 0)0407 !0)2239 0)0636 0)1701 !0)0004 !0)1435 0)2483
1}10 !0)0324 !0)0788 !0)2259 0)1985 0)1708 !0)0624 !0)1707 0)2353
2, 4, 4, 5, 6, 6}10 0)0121 !0)0314 !0)3555 0)0371 0)2288 0)0295 !0)2026 0)2633

All UPOs 0)0056 !0)0343 !0)2313 0)1260 0)1763 0)0070 !0)1748 0)2680

Figure 2. Plots of the identi"ed sti!ness models:**, a cubic polynomial from 30 unstable periodic orbits with
three primary harmonics balanced; - - - - -, a cubic model with four harmonics balanced; ) ) ) ) ), a fourth-degree
polynomial with three harmonics balanced.
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on three primary harmonics of 30 unstable periodic orbits for the validation. Since the
fourth-degree model is globally unstable, it is assumed to be a less-robust representation of
the system. The cubic model identi"ed from two harmonics produced a negative damping
coe$cient which is taken to be physically unrealistic.

Based on the results for 30 periodic orbits and three primary harmonics, we obtain
a qualitative model for the experimental system:

zA#0)0057z@!0)0251!0)2424z#0)1026z2#0.1825z3"0)3192 cos tJ . (6)

Recall that the model is scaled from physical units by an unknown calibration factor c.

3.6. RESULTS FOR AN INTERPOLATION MODEL

We also used interpolation functions [22] to identify the system. The model was

zA#aJ z@#
N
+
i/1

bI
i
/
i
(z)"aJ cos tJ#bI sin tJ , (7)



Figure 3. A plot of the identi"ed non-linear sti!ness in terms of interpolation functions (**). Also plotted is
the identi"ed cubic model (- - - - -) for comparison.

Figure 4. A plot of the identi"ed two-well potential in terms of interpolation functions (**). Also plotted is the
identi"ed cubic model (- - - - -) for comparison.
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where /
i
(z) are localized tent functions, explained as follows. The span of the data,

s"max(z)!min(z), is split up into N!1 equal intervals (a
i
, a

i`1
), i"1,2,N!1, of

length h. Then, /
i
(z)"(z!a

i
)/h if a

i~1
(z(a

i
, /

i
(z)"!(z!a

i`1
)/h if a

i
(z(a

i`1
,

and /
i
(z)"0 otherwise. The /

i
(z) play the same role as each monomial in the polynomial

model. The identi"cation process is carried out the same way, such that the parameters
b3
i

are estimated. The relationship between the parameters in the voltage-unit,
time-normalized co-ordinates, and those of the displacement co-ordinates which are not
time normalized, may not be so clear. Nonetheless, the model in the normalized
co-ordinates is useful for our purposes.



TABLE 5

Identi,ed damping coe.cients and forcing amplitudes for models based on N equally spaced
interpolation functions /

i
, with n primary harmonics balanced among 30 unstable periodic

orbits

N n a8 Ja8 2#bI 2

11 2 0)0179 0)2989
11 3 0)0113 0)2971
13 2 0)0197 0)2968
13 3 0)0111 0)2939
15 1 0)0228 0)3067
15 2 0)0184 0)2968
15 3 0)0077 0)2943
17 2 0)0188 0)2971
17 3 0)0074 0)2943
19 2 0)0220 0)2967
19 3 0)0101 0)2937
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The resulting interpolated sti!ness model, based on N"15, n"2 primary harmonics
and 30 periodic orbits, is plotted in Figure 3, and is compared to the cubic model based on
30 periodic orbits and n"3. The integral of this sti!ness force shows the identi"ed two-well
potential (Figure 4). The interpolation function reveals a two-well potential with slightly
more localized features. These comparisons visually suggest how the cubic term represents
a "t to the physical force characteristic.

The estimated damping coe$cients aJ and force amplitudes are tabulated for several
values of N and n in Table 5. The numbers are quite consistent with variation of N for
a "xed value of n. Plots of the interpolated sti!ness functions, though not shown, reveal
a consistent shape for these values of N and n. Outside these values, the plots lose this
consistency, and develop oscillations in z.

Next, these identi"ed models are to be validated and compared.

4. VERIFICATION OF THE IDENTIFIED MODELS

We evaluate the identi"ed model by comparing the properties of the models linearized
about the stable equilibria with small-motion properties of the experiment, and also by
comparing numerical simulations with the experiment. After discussing damping issues, we
evaluate the identi"ed vector "elds themselves.

4.1. ESTIMATION OF NATURAL FREQUENCIES AND DAMPING RATIOS

Linearizing the identi"ed polynomial model of equations (6) and (7) around the
equilibrium points, we can calculate the eigenvalues of the linearized model, and hence
estimate the natural frequencies and damping ratios for comparison with experimental
measurements. Using the cubic model based on n"3 harmonics and 30 UPOs, the
equilibrium points are estimated to be z

1
"!1)4260 V, z

2
"!0)1000 V, and

z
3
"0)9639 V, at which the cubic sti!ness function is zero to four decimal places. These

values can be compared to the experimental stable equilibria of !1)21 and 0)77 V.



TABLE 6

Comparison between the natural frequencies and the damping ratios of the experiment, the
polynomial model, and the interpolation model

z
1

f
1

(Hz) f
1

z
3

f
3

(Hz) f
3

Experiment !1)21 8)5 0)0273 0)77 7)7 0)0252
Cubic model !1)43 5)70 0)0038 0)96 5)11 0)0043
Interpolation model !1)17 8)67 0)0034 0)77 9)16 0)0032
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The eigenvalues of the Jacobian of equation (6) are computed as !0)0029$0.7605i, for
z
1
, !0)5102 and 0)5045 for z

2
, and !0)0029$0)6812i for z

3
in the time-normalized

system. As expected, z
1

and z
3

are stable spirals, and z
2

is a saddle. For the spirals, the real
part represents the decay rate, and the imaginary part represents the damped natural
frequency. The damping ratio can be estimated by dividing the real part by the imaginary
part, yielding f

1
"0)0038 and f

3
"0)0043 for z

1
and z

3
respectively. Converting into real

time by multiplying by the driving frequency (7)5 Hz in this case), the damped natural
frequencies are f

1
"5)7037 Hz and f

3
"5)1090 Hz respectively.

The same analysis can be performed on the interpolation model, which is continuous and
has a well-de"ned derivative except on the grid points. For the time-normalized model
based on 15 interpolation functions, the predicted "xed points are z

1
"!1)1731,

z
2
"!0)2172, and z

3
"0)7699, with z

1
and z

3
representing stable spirals, and z

2
being

a saddle. The associated natural frequencies and damping ratios are f
1
"0)0034 and

f
1
"8)6685 Hz for z

1
, and f

3
"0)0032 and f

3
"9)1568 Hz for z

3
.

The transfer functions of the experimental system were obtained for small free motions
about each stable equilibrium. Using the half-power point method, and assuming the
damping ratio, f, is small, the damping ratio can be estimated. Table 6 contains
a comparison of the natural frequencies and the damping ratios of the two linearized models
and the experimental small-motion transfer functions.

The cubic model resulted in underestimated frequencies, whereas the interpolation model
resulted in slightly overestimated frequencies.

The discrepancies between the measured natural frequencies and those predicted by the
identi"ed models may not be so surprising. The parameters were identi"ed by minimizing
the squares of errors in the non-linear functions (in terms of their Fourier harmonics), but
not by minimizing the squares of errors in the slopes of these functions, whence the
linearized properties are derived. Magnetic forces are inversely proportional to distances
squared, and the polynomial model contains no such terms. Local variations in slopes may
deviate considerably, as can be imagined from the deviations between the sti!ness
characteristics of the polynomial and interpolation models (Figure 3).

Both models produced damping factors that are lower than the small-motion linear
damping estimates. We will return to this damping issue shortly.

4.2. NUMERICAL SIMULATIONS

Numerical integration of equation (6) is carried out using the Runge}Kutta method. The
phase portrait of the experiment, plotted using a "nite-di!erence approximation to the
experimental velocity, such that zR

i
+(z

i`1
!z

i~1
)/2h, along with the phase portraits of

the simulated cubic and interpolation models, are shown in Figures 5}7. The numerical



Figure 5. A phase portrait from the experimental data.

Figure 6. A phase portrait from the simulated cubic model.

MAGNETO-ELASTIC OSCILLATOR 797



Figure 7. A phase portrait from the simulated interpolation model.

Figure 8. Some extracted period-4 orbits from the experimental data. The delay is T"7 h.
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Figure 9. Some extracted period-4 orbits from the simulated cubic model. The delay is T"7 h.
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derivative is trusted because numerical derivatives plotted in the simulated cases were not
visually distinguishable in the phase portraits. Both simulated models reproduce the
qualitative feel of the experimental plot, in that they all exhibit random-like walks between
the wells, intermixed with orbits surrounding both wells, at similar scales of global motion.
The visibly noteworthy distinction is in the depth of the dips the trajectories make as they
pass by the saddle (z+0). The experimental dips are more pronounced than the cubic
model, and similarly pronounced as in the interpolation model. Dips are again tied to the
extremity of the features of the potential wells. If an unforced vibration were considered, the
cubic wells, being smoothed over compared to the interpolation wells (and probably
compared to reality) such that the local maximum of the saddle is lower than in the
interpolation model, would allow larger kinetic energies in the vicinity of the saddle, and
hence larger velocities such that the dips are less pronounced. This qualitative feature is
likely to carry over in the presence of harmonic forcing. The pronounced dips are seen in
other experiments on magneto-elastic two-well oscillators (e.g. reference [6]).

Periodic orbits were extracted from the pseudo-phase spaces of the simulations, under the
same reconstruction parameters as in the experimental extractions. Plots of selected
periodic orbits are displayed in the experiment (Figure 8), cubic model (Figure 9), and
interpolation model (Figure 10). The comparison of the extracted orbits might be
extrapolated by suspecting the existence of nearly symmetric sets of unstable periodic orbits.
Since the non-linear sti!ness is not purely symmetric, it is conceivable that the broken
symmetry might annihilate some of the symmetries suspected in the response. Some
symmetries are evident among those extracted. While the agreement in the extracted
periodic orbits varies, we should note that large di!erences in extracted orbits do not
exclude the existence of more similar orbits that may not have been visited in the



Figure 10. Some extracted period-4 orbits from the simulated interpolation model. The delay is T"7 h.
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"nite-length responses. Both the cubic and interpolation models qualitatively support the
experiment, with more striking matches witnessed in the interpolation model.

Finally, we looked at PoincareH sections of the data. The PoincareH sections from the
experiment, the cubic model, and the interpolation model are compared in Figure 11. Both
models are quite cloudy compared to the experiment; the models do not reveal any localized
or layered structure that the experimental data exhibit. This suggests that the models indeed
have underestimated damping [27, 28]. Localized layering is associated with phase-volume
contraction, which is usually related to damping.

As a cautionary note, the post homoclinic-bifurcation behavior of the two-well oscillator,
or any chaotic system, can be rather complicated, with windows of higher period motions
amidst intervals of chaotic behavior. The identi"cation method makes use of the existence
of periodic solutions and the magnitudes and phases of their harmonics, and not their
stabilities. It is conceivable for the identi"ed polynomial model to contain periodic orbits
close to those used in the identi"cation, but with one of them turning out to be stable. If this
were to happen, such a simulated stable periodic response might, at "rst glance, appear
strikingly di!erent from the experimental chaotic response, when in fact the model may
otherwise be a good "t of the experimental system.

4.3. IDENTIFICATION WITH DAMPING KNOWN A PRIORI

Both the behavior localized to the equilibria and the global responses as viewed in the
PoincareH sections suggest that the harmonic-balance method has produced underestimated



Figure 11. The PoincareH sections from (a) the experiment, (b) the cubic model, and (c) the interpolation model.
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damping factors. What is the source of the underestimated damping? One possible
explanation is that the method has a weakness in determining damping estimates. Another
possibility is that the incorporation of solely linear damping in the model is inaccurate.
A third possibility is that there is an undetected bug in our computer program which only
a!ects the damping estimates. In this section, we assume the former, and revisit the
identi"cation.

With a slight adjustment in the parameter identi"cation scheme, we can incorporate
a known damping coe$cient into the algorithm. We do this by multiplying the harmonics
of the xR

k
terms in the matrix A by the damping coe$cient and including them in the known

vector q. The rest of the parameters are identi"ed as before.
To this end, we have included a damping coe$cient a8 "0)0327. The resulting identi"ed

cubic model and interpolation model have insigni"cant changes in the identi"ed sti!ness,
but the identi"ed excitations are changed slightly, presumably to accommodate an energy
balance. These identi"ed models were simulated and the PoincareH sections are shown in
Figure 12. The degree of foliation, or the visual amount of localized and layered features,
between the experiment and the models is now comparable. Furthermore, the shape of the
attracting set of the interpolation model matches up visually with the experiment better
than the cubic model. The conclusions we draw from these simulations are, "rst, that the
linearly estimated damping is a reasonable estimate, and second, that the interpolation
model does an excellent job of modelling the non-linear sti!ness.

In this example, the harmonic-balance method shows a weakness in evaluating linear
damping. It is unknown whether this weakness prevails under non-linear damping
conditions. When we applied the harmonic balance we took advantage of linear damping



Figure 12. The PoincareH sections from (a) the experiment, (b) the cubic model, and (c) the interpolation model.
The models were identi"ed with the linear damping incorporated a priori.
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by representing the z@ harmonics through the derivatives of z in the Fourier series. If the
system were to have non-linear damping, we would need to estimate the z@ time signal,
evaluate the non-linear damping form, and then "nd its Fourier coe$cients.

4.4. EVALUATING THE VECTOR FIELD

In the previous sections we have evaluated the identi"ed models by looking at linearized
quantities and also by examining simulated responses. Linearized quantities do not fully
represent a non-linear system. The use of simulated responses may be risky in systems with
sensitivity to parameters or initial conditions. However, an evaluation of the vector "eld
itself should not have either of these problems.

The vector "eld is alternatively de"ned by the ordinary di!erential equation, which could
be represented in the form

zA"g (z, z@, tJ ), (8)

where g(z, z@, tJ )+g
m
(z, z@, tJ ), with g

m
(z, z@, tJ ) being the identi"ed model of the forces in the

oscillator. Thus, the function g
m
(z, z@, tJ )"!az@!+p

i/0
b
i
f
i
(z, z@)#a cos tJ#b sin tJ could

consist of polynomial terms, interpolation functions, or other functions depending on the
identi"cation performed.

We check the quality of the model by evaluating the model at points in the experimental
data. In other words, we check

zA!g
m
(z, z@, tJ )"r,



Figure 13. For a period-4 orbit extracted from the experimental data: **, the acceleration; - - - - -, the force
evaluated in the models; and ) ) ) ) ), the error. (a) The interpolation model and (b) the cubic model.
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where r is the error, and hope that r is small. In doing this, we approximate z@ and zA by "nite
di!erences.

We can make these vector-"eld evaluations for any sequence of points in the data. We
present results for some of the extracted UPOs. Figure 13 shows an example of the
deviation, during an extracted period-four motion, between zA and g

m
(z, z@, tJ ) for the

interpolation model and the cubic model, both of which include damping as determined
a priori. The solid lines show the "nite-di!erence acceleration, and the dashed lines track the
identi"ed force term. The dotted lines show the error. The interpolation model very
accurately represents the forces in the oscillator. These trends are repeated in other
extracted UPOs.

Figure 14 compares the normalized root mean-squared errors for eight di!erent UPOs,
quantifying the "ner capability of the interpolation model for capturing the system forces.
The error is normalized against the root mean-squared acceleration.

Finally, Figure 15 shows the normalized root mean-squared error for the interpolation
model with damping identi"ed in the two ways discussed previously. The circles represent
the model with damping identi"ed from small-motion linear behavior, and the asterisks



Figure 14. The normalized root mean-squared errors for eight di!erent extracted UPOs: s, the interpolation
model; #, the cubic model.

Figure 15. The normalized root mean-squared errors in the interpolation model for eight di!erent extracted
UPOs. The damping is estimated by: s, linear dynamics; *, balanced harmonics.
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track the case of damping found by balancing harmonics. The di!erences in the vector-"eld
errors are small, but the model with a priori linear damping consistently outperforms the
model with damping found by the harmonic-balance scheme.

5. CONCLUSION

The harmonic-balance identi"cation procedure has been applied for the parametric
identi"cation of a chaotic single-degree-of-freedom oscillator, in which the parameters
appear linearly in the di!erential equation of motion. Many unstable periodic orbits are
extracted from a single set of experimental data, and then used for the harmonic balance.

Quality of the results depends on the choice of the model. We see in this work how two
di!erent models, a polynomial model and an interpolation model, perform in
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approximating the experimental system in both its simulated global dynamics and its
linearized properties near equilibria. In this case, the interpolation model was better in
representing the equilibria positions, the local frequencies, and the shape of the strange
attracting set. The interpolation model also captured the non-linear forces more accurately,
as shown in vector-"eld evaluations. The interpolation model was likely to have traced the
contours of the non-linear sti!ness better than the cubic model, while the cubic model was
likely to smoothly "t the real characteristic. However, the cubic model was qualitatively
satisfactory, and would lend itself better to analyses and parameter studies than the more
complicated interpolation model.

In this example, the harmonic-balance identi"cation method was rather robust with
respect to the number of harmonics balanced, the set of extracted periodic orbits, and the
number of interpolation functions. While the harmonic-balance identi"cation method
successfully identi"ed the non-linear sti!ness, there was some deviation in the damping
estimation which a!ected details in the simulated dynamics, such as in the degree of
phase-space contraction visible in the PoincareH section. This e!ect of damping estimation
on the vector-"eld root mean-squared error was slight, but it was consistent across
segments of the data series.

For assessing the feasibility of harmonic-balance identi"cation in chaotic systems,
future work might address systems with clearly de"ned non-linearity, and multi-
degree-of-freedom systems.
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